DIMENSIONAMENTO ASTA.

Assumiamo per l'acqua di mare:

$$v = 1,E-06$$
 m^2/s
 $\gamma = 1025$ Kg/m^3
 $\rho = 104,485$ $Kg s^2/m^4$

Consideriamo che il battello navighi alla velocità massima in immersione (barra ad ogni timone. Trascuriamo gli effetti del *Numero di Reynolds* .

19 nodi) e che vengano dati 31 ° di

Dal diagramma di p.16 si ricava:

Consideriamo la porzione di asta esterna alla boccola a scafo e caricata a flessione e torsione dovute alle forze idrodinamiche sull'idroplano.

Trascureremo gli effetti di taglio.

Assumendo:

barra a sezione circolare piena

diametro
$$\phi = 355$$
 mm

momento di inerzia assiale $I_x = 7.80E + 08$ mm⁴

momento di inerzia polare $I_p = 1.56E + 09$ mm⁴

tensione di snervamento $\sigma_{snervamento} = 360$ N/mm² (acciaio Fe 360)

coefficiente di sicurezza $\eta = 1.8$
 $\sigma_{ammissibile} = 200$ N/mm²

le tensioni massime sulla superficie esterna dell'asta sono:

$$\tau_{max} = -3,52E+01$$
 N/mm² $\sigma_{max} = 1,90E+02$ N/mm²

da cui la $\sigma_{\text{equivalente}}\,\text{secondo}$ Von Mises:

$$\sigma_{\text{equivalente}} = \hspace{1cm} 200 \hspace{1cm} \text{N/mm}^2 \hspace{1cm} = \hspace{1cm} \sigma_{\text{ammissibile}}$$

Per il tratto di asta tra i due cuscinetti si adotta un diametro minore:

diametro	φ = 240	mm
momento di inerzia assiale	I _x = 1,63E+08	mm ⁴
momento di inerzia polare	$I_0 = 3,26E+08$	mm ⁴

Calcoliamo il momento torcente dovuto all'attrito nei cuscinetti:

Si trascura la flessione e si applica la sovrapposizione degli effetti per la torsione:

$Q_F =$	5,E+06	N mm		
$Q_{tot} =$	3,E+08	N mm		
	,	N/mm²		
$\tau_{\text{max}} =$	1,16E+02	IN/IIIIII		
$\sigma_{\text{equivalente}} =$	200	N/mm ²	=	σ_{ammiss}

Tali diametri sono accettabili dal punto di vista degli ingombri rispetto al profilo del timone.

La valvola limitatrice apre a 70 Kg / cm², corrispondenti ad una forza assiale del torchio di 21111,5 Kg.

Tale forza può equilibrare un momento torcente di modulo: 1,E+08 N mm > Q_{tot}, che si avrebbe oltre lo scontro dei 31°.

Per evitare sollecitazioni eccessive sui cinematismi adotteremo uno scontro elettrico che a 30° agisca sui servomotori bloccando l'alimentazione dei torchi.